Harnack type inequalities for operators in logarithmic submajorisation

نویسندگان

چکیده

The aim of this paper is to study the Harnack type logarithmic submajorisation and Fuglede-Kadison determinant inequalities for operators in a finite von Neumann algebra. In particular, due Lin-Zhang [15] Yang-Zhang [27] are extended case

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Harnack inequalities∗

Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...

متن کامل

Harnack Inequalities for Non-local Operators of Variable Order

We consider harmonic functions with respect to the operator Lu(x) = ∫ [u(x+ h)− u(x)− 1(|h|≤1)h · ∇u(x)]n(x, h) dh. Under suitable conditions on n(x, h) we establish a Harnack inequality for functions that are nonnegative and harmonic in a domain. The operator L is allowed to be anisotropic and of variable order.

متن کامل

Harnack Inequalities for Degenerate Diffusions

We study various probabilistic and analytical properties of a class of degenerate diffusion operators arising in Population Genetics, the so-called generalized Kimura diffusion operators [8, 9, 6]. Our main results are a stochastic representation of weak solutions to a degenerate parabolic equation with singular lower-order coefficients, and the proof of the scaleinvariant Harnack inequality fo...

متن کامل

Harnack inequalities for jump processes

We consider a class of pure jump Markov processes in R whose jump kernels are comparable to those of symmetric stable processes. We establish a Harnack inequality for nonnegative functions that are harmonic with respect to these processes. We also establish regularity for the solutions to certain integral equations.

متن کامل

Harnack Inequalities in Infinite Dimensions

We consider the Harnack inequality for harmonic functions with respect to three types of infinite-dimensional operators. For the infinite dimensional Laplacian, we show no Harnack inequality is possible. We also show that the Harnack inequality fails for a large class of Ornstein-Uhlenbeck processes, although functions that are harmonic with respect to these processes do satisfy an a priori mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2021

ISSN: ['1848-9974', '1846-3886']

DOI: https://doi.org/10.7153/oam-2021-15-69